Abstract
A novel minimally invasive way to measure blood glucose concentration is proposed by combining interstitial fluid transdermal extraction and surface plasma resonance (SPR) detecting. 55K Hz low-frequency ultrasound pulse is applied for less than 30 seconds to enhance the skin permeability and then interstitial fluid is extracted out of skin by vacuum. The mathematical model to express the correlation between interstitial fluid glucose and blood glucose is also developed by considering the changes of the skin conductivity. The glucose concentration in the interstitial fluid is determined using an optical SPR biological sensor that measures the refractive index. A protein-glucose binding technology using Dgalactose/ D-glucose Binding Protein for specific absorption of glucose is employed to increase SPR measurement precision. By immobilizing GGBP onto the surface of the SPR sensor, the experimental result indicates the detecting resolution of glucose rises to 1mg/L, the system succeeds in distinguishing glucose from other components in mixture. The feasibility of this method is validated for clinical application with the requirements of bloodless, painless, continuous glucose monitoring and a prototype microfluidic diabetes-monitoring device is under development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.