Abstract

This paper presents an analysis of modeling methods for a short cycling, R-410A scroll compressor. Two parametric efficiency models of the short cycling scroll compressors are investigated, one with steady-state mean, and one with time varying efficiencies. Additionally, a dynamic model of a short cycling scroll compressor that incorporates scroll geometry, leakage, and a mathematical approximation of the digital capacity mechanism has been developed and verified against experimentally obtained data. Agreement with data for all methods was generally good, though in the dynamic model refrigerant mass flow was found to match observations when neglecting leakage. To validate the proposed models, a novel experimental testbed was developed by retrofitting a 15 ton nominal capacity rooftop heat pump with a short cycling scroll compressor. Unit operating conditions were varied in a parametric fashion using a large scale psychrometric chamber and the compressor transient performance was evaluated at full and part loads.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call