Abstract

The goal of this study is to define the operating envelope of a 20MW molten carbonate fuel cell (MCFC)-gas turbine hybrid system, under part load conditions. The first part of the paper reviews our baseline fuel cell hybrid system model that predicts overall system LHV efficiency around 69% at full load. The second part of the paper consider several strategies: 1/ run fuel cell at full load and bypass gas turbine; 2 /run fuel cell at full load and gas turbine at part load; 3/ run fuel cell at OCV and gas turbine at full load; 4/ run fuel cell at part load and gas turbine at full load; and 5/run both fuel cell and gas turbine at part load. The best system part-load performance was achieved when the fuel cell operates at part load while the gas turbine is at full load. The highest operational flexibility is achieved when we part load both the fuel cell and the gas turbine. Depending on system targets and deliverables such as fuel cell voltage and fuel utilization or gas turbine firing temperature some of these modes may not be economical. A comparison with the performance of a conventional combined cycle 20MW power plant under part load was performed. The MCFC hybrid system showed better efficiency and better cost of electricity (COE) under part load operation than the gas turbine combined cycle part loaded.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call