Abstract
A new 2-D simulation code resolving the Schrödinger and Poisson equations coupled with the ballistic transport equation in double-gate (DG) devices has been developed. The present approach also includes the quantum mechanical tunneling of carriers through the source-to-drain barrier and the wave-function penetration in the gate oxide. This code has been used to investigate the operation of DG metal–oxide–semiconductor field-effect transistors (MOSFETs) in the deca-nanometer range (5–20 nm) with ultra-thin gate oxide and film bodies (1.5 nm). The present study highlights the impact of quantum tunneling on the DG MOSFET scaling by particularly analyzing several critical performance indicators such as short-channel effects, off-state current and subthreshold slope.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have