Abstract
This paper presents a multiple flow-regime model for pressure drop during condensation of refrigerant R134a in horizontal microchannels. Condensation pressure drops measured in two circular and six noncircular channels ranging in hydraulic diameter from 0.42mmto0.8mm are considered here. For each tube under consideration, pressure drop measurements were taken over the entire range of qualities from 100% vapor to 100% liquid for five different refrigerant mass fluxes between 150kg∕m2s and 750kg∕m2s. Results from previous work by the authors on condensation flow mechanisms in microchannel geometries were used to assign the applicable flow regime to the data points. Garimella et al. (2005, “Condensation Pressure Drop in Circular Microchannels,” Heat Transfer Eng., 26(3) pp. 1–8) reported a comprehensive model for circular tubes that addresses the progression of the condensation process from the vapor phase to the liquid phase by modifying and combining the pressure drop models for intermittent (Garimella et al., 2002, “An Experimentally Validated Model for Two-Phase Pressure Drop in the Intermittent Flow Regime for Circular Microchannels,” ASME J. Fluids Eng., 124(1), pp. 205–214) and annular (Garimella et al., 2003, “Two-Phase Pressure Drops in the Annular Flow Regime in Circular Microchannels,” 21st IIR International Congress of Refrigeration, International Institute of Refrigeration, p. ICR0360) flows reported earlier by them. This paper presents new condensation pressure drop data on six noncircular channels over the same flow conditions as the previous work on circular channels. In addition, a multiple flow-regime model similar to that developed earlier by Garimella et al. for circular microchannels is developed here for these new cross sections. This combined model accurately predicts condensation pressure drops in the annular, disperse-wave, mist, discrete-wave, and intermittent flow regimes for both circular and noncircular microchannels of similar hydraulic diameters. Overlap and transition regions between the respective regimes are also addressed to yield relatively smooth transitions between the predicted pressure drops. The resulting model predicts 80% of the data within ±25%. The effect of tube shape on pressure drop is also demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.