Abstract
Dissipative particle dynamics (DPD), a mesoscopic simulation approach, has been used to investigate the chain length effect on the structural property of the immiscible polyethylene (PE)/poly(L-lactide) (PLLA) polymer in a polymer blend and in a system with their diblock copolymer. In this work, the interaction parameter in DPD simulation, related to the Flory-Huggins interaction parameter chi, is estimated by the calculation of mixing energy for each pair of components in molecular dynamics simulation. The immiscibility property of PE and PLLA polymers induces the phase separation and exhibits different architectures at different volume fractions. In order to observe the structural property, the radius of gyration is used to observe the detailed arrangement of the polymer chains. It shows that the structure arrangement of a polymer chain is dependent on the phase structure and has a significantly different structural arrangement character for the very short chains in the homopolymer and copolymers. The chain length effect on the degree of stretching or extension of polymers has also been observed. As the chain length increases, the chain exhibits more stretching behavior at lamellae, perforated lamellae, and cylindrical configurations, whereas the chain exhibits a similar degree of stretching or extension at the cluster configuration.
Paper version not known (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have