Abstract

Abstract Failure of two aluminum sheets, AA5754 and AA6111, under stretching conditions is analyzed using a combined plane stress and plane strain approach. The sheet material is modeled by an elastic-viscoplastic constitutive relation that accounts for material plastic anisotropy, material rate sensitivity, and the softening due to the nucleation, growth, and coalescence of microvoids. Failure processes of sheet metals are modeled under plane strain tension. Also, failure strains are determined under bending conditions when the necking mode is suppressed. The results are consistent with experimental observations where the failure strain of the aluminum sheets increases significantly under bending conditions. The results indicate that when a considerable amount of necking is observed under stretching conditions, failure strains under bending conditions are higher.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.