Abstract

The microstructural evolution of microalloyed steel during hot forging process was investigated using physical simulation experiments. The dynamic recrystallized fraction was described by modifying Avrami's equation, the parameters of which were determined by single hit compression tests. Double hit compression tests were performed to model the equation describing the static recrystallized fraction, and the obtained predicted values were in good agreement with the measured values. Austenitic grain growth was modeled as: D i n c 5 = D 0 5 + 1.6 × 10 32 t ⋅ exp ( - 716870 RT ) using isothermal tests. Furthermore, an equation describing the dynamic recrystallized grain size was given as D dyn = 3771·Z −0.2 . The models of microstructural evolution could be applied to the numerical simulation of hot forging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call