Abstract

Two phase titanium alloy-TC11 alloy and Superalloy-IN718 alloy are being considered for high-temperature structural applications in aero-engine because of their excellent mechanical properties at elevated temperatures. The mechanical properties of their forgings are sensitive to the microstructure. Therefore, it is crucial to obtain a corresponding microstructure by controlling the hot working process. For the forging of TC11 alloy, the ingot break down in the subtransus region is an important process which acted as the primary role in the transformation of lamellar structure to equiaxed one as well as its poor formability because of lower deformation temperature. In this paper, the lamellar globularization kinetics and fracture behavior during forging are studied and modeled. For the hot forging of IN718 alloy. the grain size evolution is an important process. As the δ phase in the alloy can control grain growth through the strong pinning effect, the effect of δ phase on the microstructure evolution during hot working has been considered in this paper, and the microstructure evolution model has been established. As a applications, The lamellar globularization and fracture during the subtransus cogging process of large size TC11 alloy billet, and the microstructure development during the hot forging process of IN718 alloy turbine disk have been investigated commercial FE Software with user subroutines. The prediction results showed good agreement with the actual ones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.