Abstract

The favorable energy absorption characteristics of foam structures originate from their layer-by-layer deformation behavior. In this paper, the effects of cell morphology on the compressive performance of thin-walled aluminum foams were studied by a finite element method using a three-dimensional, thin-shell Kelvin tetrakaidecahedron model. Models with varying cell structure parameters were established so that the effects of relative density, cell size, cell wall thickness, and cell anisotropy on the plateau stress and energy absorption capacity of the foams could be investigated. Both the numerical deformation behavior and stress-strain curves of aluminum foams are found to have good agreement with the experimental results under quasi-static compressive loading. Moreover, the deformation behaviors of those foams with a certain anisotropy ratio are compared for different loading directions. The cell shape is a key factor affecting the plateau stress as well as the relative density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call