Abstract
Abstract This paper is an experimental study of the quasi-static mechanical compressive properties of the reinforced closed-cell aluminum alloy foams with different cell orientations at different strain rates. The reinforced foam samples were obtained via the powder metallurgical route. The results of the compression tests revealed that the deformation behavior and mechanical properties of foamed aluminum composites are highly dependent on the orientation of the reinforcing mesh. Differences in the deformation behavior of foams appear to be influenced by the mechanical properties of the matrix material, by foam deformation mechanisms, and by the mechanical properties of the reinforcement. The yield stress, plateau stress, densification stress, and energy absorption capacity of unreinforced foam samples improved linearly with increasing strain rate due to dynamic recrystallization and softening of the foam matrix material. The reinforced foam samples exhibit nonlinear deformation behavior. It was also found that the mechanical properties reduction of transverse reinforced foams was slightly lower compared to foams with longitudinal reinforcement at varying strain rates because of the large contribution of the mechanical properties of the reinforcement. The results of the present study can be employed to modelling and obtain impact-resistant fillers for complex structures in transport construction.
Highlights
This paper is an experimental study of the quasistatic mechanical compressive properties of the reinforced closed-cell aluminum alloy foams with different cell orientations at different strain rates
It was found that the mechanical properties reduction of transverse reinforced foams was slightly lower compared to foams with longitudinal reinforcement at varying strain rates because of the large contribution of the mechanical properties of the reinforcement
This work was concerned with the quasi-static compressive mechanical properties of closed-cell aluminum alloy foams reinforced with a steel mesh with different call orientations at different strain rates
Summary
Abstract: This paper is an experimental study of the quasistatic mechanical compressive properties of the reinforced closed-cell aluminum alloy foams with different cell orientations at different strain rates. The reinforced foam samples were obtained via the powder metallurgical route. The results of the compression tests revealed that the deformation behavior and mechanical properties of foamed aluminum composites are highly dependent on the orientation of the reinforcing mesh. Differences in the deformation behavior of foams appear to be influenced by the mechanical properties of the matrix material, by foam deformation mechanisms, and by the mechanical properties of the reinforcement. The yield stress, plateau stress, densification stress, and energy absorption capacity of unreinforced foam samples improved linearly with increasing strain rate due to dynamic recrystallization and softening of the foam matrix material. The results of the present study can be employed to modelling and obtain impact-resistant fillers for complex structures in transport construction
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.