Abstract

A method has been developed for constructing large-scale electrophysiological models using extended cellular automata and for running such models on a cluster of shared memory systems. A method is proposed, including the extension of the language cellular automaton for the implementation of quantitative calculations, the construction of the whole-heart model with the Visible Human Project data, the parallelization of the model on a cluster of computers with a general and a simulation algorithm that connects the activity of cells with an electrocardiogram. It is shown that electrical activity at the level of canals, cells and organs can be traced in the extended system of cellular automata. Examples of some signals of electrocardiograms simulated by a two-dimensional cut are given. Also, an evaluation of the performance of a three-dimensional model on a four-member cluster.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call