Abstract
Recently, deterioration of infrastructure facilities has become problem. To reduce inspection costs, wear diagnosis of journal bearings in operating conditions using machine learning has been studied. However, constructing a highly accurate machine learning model requires training data, and it may be difficult to conduct numerous tests depending on the application. In this study, a mathematical model of a rotor system for wear diagnosis of journal bearings was developed, and the vibration data was obtained when the clearance changed due to wear. Then, changes in the features used for condition monitoring were examined. Furthermore, the important features for wear diagnosis were selected and SVM models were constructed to verify the mathematical model.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have