Abstract

Glass waveguide devices fabricated by ion exchange have evolved to the point where conventional assumptions of waveguide symmetry and mutual independence are no longer valid. We describe a modeling tool that allows for the presence of an arbitrary, nonhomogeneous electric field distribution during the ion exchange process. An asymmetric waveguide produced by selective field-assisted burial is modeled and discussed. A directional coupler fabricated by field-assisted thermal ion exchange and subsequent field-assisted burial is modeled, and it is shown that a proximity effect exists in which the waveguides exert a mutual influence upon each other during processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call