Abstract

This paper introduces an innovative method for characterizing, implementing, and validating both three-phase and single-phase induction motor models, accompanied by a variable speed drive model. The primary goal is to investigate interactions between the electrical power grid and other dynamic domains (e.g., thermofluidic) that impact motor/load drive behavior. Our approach involves establishing a mechanical interface based on a physically meaningful equation linking motor torque/speed to the electrical model in the phasor domain. This allows seamless integration of diverse domain subsystems into a unified multi-domain model using Modelica v4.0.0 and the OpenIPSL library v3.0.1, overcoming co-simulation limitations. The proposed model, which requires only one Modelica-compliant tool for simulation, introduces additional dynamics through the mechanical interface, enabling explicit simulation of load disturbances based on constitutive physics. This deepens our understanding of dynamic interactions between the electrical power domain and other subsystems connected through the motor. We detail the modeled components using mathematical equations and textual descriptions, emphasizing the Modelica modeling approach. Simulation examples validate the implementation, demonstrating the multi-domain modeling capabilities of the newly developed components.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call