Abstract
Artificial neural networks (ANNs) have been applied to heavy ion collisions. In the present work, the possibility of using ANN methods for modeling the multiplicity distributions, P(ns), of shower particles produced from p, d, 4He, 6Li, 7Li, 12C, 16O, and 24Mg interactions with light (CNO) as well as heavy (AgBr) emulsions at 4.5 A GeV/c was investigated. Two different ANN approaches, namely radial basis function neural network (RBFNN) and generalized regression neural network (GRNN), were employed to obtain a mathematical formula describing these collisions. The results from RBFNN and GRNN models showed good agreement with the experimental data. GRNN models have a better performance than the RBFNN models. This study showed that the RBFNN and GRNN models are capable of accurately predicting the P(ns) of shower particles in the training and testing phases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.