Abstract

Estimation of reference evapotranspiration (ET0) is needed to support irrigation design and scheduling, and watershed hydrology studies. There are many available methods to estimate evapotranspiration from a water surface, comprising both direct and indirect methods. In the first part of this study, the generalized regression neural networks model (GRNN) and radial basis function neural network (RBFNN) are developed and compared in order to estimate the reference ET0 for the first time in Algeria. Various daily climatic data, that is, daily mean relative humidity, sunshine duration, maximum, minimum and mean air temperature, and wind speed from Dar El Beida, Algiers, Algeria, are used as inputs to the GRNN and RBFNN models to estimate the ET0 obtained using the FAO-56 Penman-Monteith equation (PM56). The performances of the models are evaluated using root mean square errors (RMSE), mean absolute error (MAE), Willmott index of agreement (d) and correlation coefficient (CC) statistics. In the second part of the study, the empirical Hargreaves-Samani (HG) and Priestley-Taylor (PT) equations are also considered for the comparison. Based on the comparisons, the GRNN was found to perform better than the RBFNN, Priestley-Taylor and Hargreaves-Samani models. The RBFNN model is ranked as the second best model.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.