Abstract

A two-dimensional (axisymmetric) transient heat conduction in components computer program (HCC) was successfully developed for predicting engine combustion chamber wall temperatures. The alternating direction explicit (ADE) Saul'yev method, an explicit, unconditionally stable finite difference method, was used in the code. Special treatments for the head gasket and the piston-liner air gap, the piston movement, and a grid transformation for describing the realistic piston bowl shape were designed and utilized. The results were compared with a finite element method and were verified to be accurate for simplified test problems. In addition, the method was applied to realistic problems of heat transfer in an Isuzu engine and a Caterpillar diesel engine, and gave good agreement with available experimental measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.