Abstract

The process of unsteady-state membrane gas separation (fast-permeant impurity removal) with a pulsed retentate flow operation was considered. A semiempirical mathematical algorithm was developed to describe this process taking into account its kinetic characteristics (total cycle time, stripping time and withdrawal time, withdrawal velocity) using the MathCad® software package. Based on the developed algorithm, the basic operational parameters that affect the separation efficiency of the unsteady-state process were analyzed. It was shown that the optimal ratio of the stripping time and the withdrawal one determined by the maximum efficiency criterion more corresponds to the minimum retentate concentration than to the maximum productivity. However, the developed algorithm allows to set the productivity minimum limit by introducing additional initial data into the calculation procedure. The mathematical modeling results correlate well with the experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call