Abstract

Analytical review of investigations aimed at studying the aqueous foam behavior under the shock-wave impact is given. The main approaches and theoretical approximations used in the development of aqueous foams models are analyzed. The two-phase gas-drop model of aqueous foam is considered, based on the laws of conservation of mass, momentum, and energy in accordance with one-pressure, two-velocity, two-temperature approximations. The model describes foam dynamics under a high - intensity impact, which destroys the foam structure into microdroplets, and takes into account interfacial heat transfer, interfacial drag and virtual mass forces and the phenomenon of foam syneresis (deposition). The numerical implementation of the model was carried out using new solvers in the OpenFOAM software. The analysis of the numerical solution of the spherical explosion in aqueous foam is given for the conditions of the literature experimental data. The syneresis influence on the intensity and velocity of shock wave propagation is shown. The two-phase model of aqueous foam is considered, which takes into account its elastic- viscous-plastic properties for conditions of weak impact that does not destroy foam structure. The model takes into account the elastic properties of aqueous foam at small deformations and describes it as a non-Newtonian fluid when the foam changes its state from the elastic to viscoplastic. The weak shock wave propagation dynamics in the layer of aqueous foam with the formation of a two-wave structure, consisting of the main wave and the elastic precursor ahead of it, is analyzed. The process of local aqueous foam compaction zone formation, followed by a gaseous region, behind the shock wave front is shown. The reliability of the obtained results of numerical studies is confirmed by their agreement with the literature experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call