Abstract

Dynamics of low-intensity air shock waves in the shock tube containing an aqueous foam layer is theoretically investigated. Modeling of studied process is carried out using two-phase model of aqueous foam developed by the authors in single-pressure, single-speed and two-temperature approximations. The model takes into account the Ranz-Marshall interphase contact heat transfer, effective Herschel-Bulkley viscosity, which describes foam behavior as a non-Newtonian fluid, and elastic properties of aqueous foam under a weak shock impaction without destruction of foam structure. Properties of air and water as the foam components are described by realistic equations of state. Computer implementation of the aqueous foam model is carried out in the solver, developed by the authors in OpenFOAM software. The influence of aqueous foam viscoelastic properties on the intensity and structure of a shock wave has been investigated. When analyzing the obtained solutions, reliability of the proposed model and method of numerical modeling is estimated by comparative analysis of the found solutions and literature experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.