Abstract

The dynamic and thermal processes of an Mg-Zn-Y alloy droplet's spreading and solidification are investigated using the level set method in order to understand their effects on the phase change process in a uniform droplet spray process. The level set method, driven with the solidification velocity predicted by a free dendritic growth model, is capable of tracking the evolution of the solidification front within the deformed droplet. It is found that the solidification process heavily depends on the initial thermal state of the droplet, the latent heat released during solidification, and the heat loss to the substrate. A rapid solidification occurs in the initial microseconds before a slow solidification process takes place.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call