Abstract

In this paper, a Finite Element Analysis is carried out in order to simulate the process of spreading and solidification of a micrometric molten droplet impinging onto a cold substrate. This process is a crucial key to have a good understanding of coatings obtained by means of thermal spraying. The effect of thermal contact resistance (TCR) on the droplet spreading and solidification was investigated using different values of TCR and different droplet sizes. The solidification time was found to be a linear function of the droplet diameter square. Viscous dissipation, wettability and surface tension effects are taken into account. The Level Set method was employed to explicitly track the free surface of molten droplets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call