Abstract

This paper is focused on design of dive maneuvers that can be performed outdoors on flapping wing air vehicles (FWAVs) with a minimal amount of on-board computing capability. We present a simple computational model that provides accuracy of 5 m in open loop operation mode for outdoor dives under wind speeds of up to 3 m/s. This model is executed using a low power, on-board processor. We have also demonstrated that the platform can independently execute roll control through tail positioning, and dive control through wing positioning to produce safe dive behaviors. These capabilities were used to successfully demonstrate autonomous dive maneuvers on the Robo Raven platform developed at the University of Maryland.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call