Abstract

In this paper an original solution for the modeling of distributed parameter processes using neural networks is presented. The proposed method represents a particular alternative to a very accurate modeling-simulation method for this kind of processes, the method based on the matrix of partial derivatives of the state vector (Mpdx), associated with Taylor series. In order to compare the performances generated by the two methods, a distributed parameter thermal process associated to a rotary hearth furnace (R.H.F) from the technological flow of producing seamless steel pipes is considered. The main similarities and differences between the two methods are highlighted in the paper. The treated solution represents a premise for the usage of the neural networks in the automatic control of the distributed parameter processes domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.