Abstract

The temperature dependence of the current gain is investigated for GaAs-based heterostructure-emitter bipolar transistors (HEBT's). With the separation of the p-n junction and the heterojunction, the mechanism of hole injection from the base to emitter in the HEBT is different from that of a conventional HBT. Theoretical results demonstrate that the thermionic emission current plays an important role for the hole current which results in a smaller negative or even positive temperature coefficient for the current gain. Experimental data show that the base current for HEBTs is indeed dominated by thermionic emission as predicted. This finding indicates that the HEBT structure is the suitable choice for high power and high speed applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.