Abstract

We consider analytical modeling of the anterior corneal surface with a set of orthogonal basis functions that are a product of radial polynomials and angular functions. Several candidate basis functions were chosen from the repertoire of functions that are orthogonal in the unit circle and invariant in form with respect to rotation about the origin. In particular, it is shown that a set of functions that is referred herein as Bhatia-Wolf polynomials, represents a better and more robust alternative for modeling corneal elevation data than traditionally used Zernike polynomials. Examples of modeling corneal elevation are given for normal corneas and for abnormal corneas with significant distortion.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call