Abstract
Solvated electrons (eaq−) generated by atmospheric pressure plasmas in contact with liquids are a key source of plasma-induced liquid chemistry that enable applications in biotechnology and nanoparticle synthesis. In this paper, we report liquid phase reactive species concentrations near an anodic plasma-liquid interface as described by a fluid model. In particular, the interfacial structures and plasma-induced reactive species in NaCl and AgNO3 solutions as generated by a pulsed plasma are highlighted. The results show that the magnitude and the penetration depth of the eaq− concentration in AgNO3 solution are smaller than that in the NaCl solution due to the scavenger reactions of eaq− by Ag+ and NO3−. The early products of the plasma-induced Ag+ reduction are also presented, and the impact of the current density, the pulse width, and the AgNO3 concentration on the silver reduction is analyzed. It is further shown that a typical OH radical flux present in such plasmas can highly impact the eaq− concentration and the Ag+ reduction while the impact of vacuum ultraviolet radiation, H, and H2O2 is less pronounced.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.