Abstract

Aluminum doping during 4H-SiC chemical-vapor-deposition (CVD) trench filling was numerically modeled toward precise design of high-voltage superjunction devices. As a first-order approximation, growth-rate- and surface-normal-scaling functions were determined based on the reported experimental results. Simulated isoconcentration contours of aluminum were confirmed to qualitatively agree with the reported imaging of doping in SiC by scanning spreading resistance microscopy. Improvement of the proposed models based on additional experiments should contribute to reducing the development time for 4H-SiC superjunction devices fabricated using CVD trench filling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call