Abstract

The origin of aging in plutonium lies in the extra formation of defects due to self-decay of 239Pu. The modeling of the formation of these defects is achieved by molecular dynamics (MD). In this work a simple EAM potential has been used to study defects formation in fcc plutonium and a 2 keV cascade is analyzed. A large pressure wave is generated around the cascade core. In the used MD code the pressure wave is not absorbed at the box boundaries and due to the periodic boundary conditions, the use of a very large box is crucial in order to avoid interaction of the cascade with itself. More than 800 000 atoms are needed to deal with this small 2 keV cascade without any artifacts. This effect comes from the very low bulk modulus of fcc Pu. The relative long time to achieve the annealing is also connected to the bulk modulus. These results are discussed in terms of large pressure wave: alloying effects are predicted using that viewpoint.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.