Abstract

The acoustic pressure sensor described in this paper uses a small volume of ionized gas (plasma) as sensing element to receive energy from surrounding gas (air) set into oscillations by an acoustic disturbance. The generation of the ionized gas is performed by negative point-to-plane corona discharges. The passage of a pressure disturbance through this gas disturbs the flow of the charged particles between the electrodes, and provokes a current variation of the electrical system. This current variation is directly related to the acoustic pressure. An electroacoustic model of this plasma microphone is proposed. From the current–voltage relation associated with corona discharges, this model is based on the variations of the threshold voltage and the mobility of ions with pressure and temperature of the surrounding gas. An experimental setup is developed, it simultaneously allows one to compare the acoustic pressure deduced from the corona discharge sensor with that resulting from the two-microphone method in a standing wave tube. This paper also proposes a parametric study to quantify the influence of the electrical and geometrical parameters of the discharge on the sensitivity of the plasma microphone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.