Abstract

A novel double-in-plane gate oxide-based electric-double-layer (EDL) transistor structure applicable to thin-film transistors (TFTs) and nanoscale transistors (nanoFETs) is proposed. An equivalent circuit model is provided to illustrate the operation mechanism. The double-in-plane gate structure can simplify device fabrication effectively and provide unique tunability of threshold. Specifically, the gate bias modulates the threshold voltage of TFT and nanoFET and effectively controls the transistor subthreshold swing and leakage current. Moreover, the EDL gate dielectric can lead to a high gate dielectric capacitance (>1 μF/cm(2)). These simulation results provide basic understanding needed to use and control EDL TFTs and nanoFETs in a novel manner.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.