Abstract
The response of a molecule to an electric field E, often a model of environment, can be expressed in terms of a sum of power series expansions. We investigate the accuracy and limits of applicability of this expression using one-, two-, and three-dimensional models of the hydrogen-bonded complex, ClH:NH(3). Energetic, structural, and vibrational spectroscopic characteristics are determined at first- and second-order in E and [nabla]E and compared with ab initio values for a range of uniform and non-uniform electric fields chosen to simulate molecular environments. It is found that even at field strengths large enough to cause dramatic structural change in the complex, energetic, structural, and vibrational spectroscopic characteristics are accurately calculated using only terms linear in E and [nabla]E. These results suggest that knowledge of the zero-field molecular potential energy, dipole, and quadrupole moment surfaces may be sufficient to accurately model the interaction of a molecule with a wide range of chemical environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.