Abstract
Accurate modeling of friction is important in Finite element (FE) analyses of forming processes. Friction behavior depends on various parameters such as local contact load, surface topographies of sheet metal and tool, their material properties and the lubrication condition. In a typical deep drawing process, mixed lubrication condition is common, meaning that a lubricant can influence the coefficient of friction. Friction in the mixed lubrication regime is governed by the direct asperity contact as well as the hydrodynamic pressure developed by the lubricant. Local hydrodynamic pressure is also influenced by surface topography in addition to the lubricant amount and other process parameters. Direct numerical implementation of a measured surface topography in FE simulations is impractical due to the enormous computational effort. In this study, the overall frictional behavior in mixed lubrication regime is determined with the main objective to incorporate real measured surface topography in an efficient manner. An average Reynolds equation is solved on global FE domain of the forming simulation to determine lubricant pressure. A coupled friction model combining the effects of lubricant pressure and direct asperity contact is implemented in the forming simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.