Abstract

Highly loaded ball and rolling element bearings are often required to operate in the mixed elastohydrodynamic lubrication regime in which surface asperity contact occurs simultaneously during the lubrication process. Predicting performance of components operating in this regime is important as the high asperity contact pressures can significantly reduce the fatigue life of the interacting components. Rolling contact fatigue is one of the most dominant causes of failure of components operating in mixed lubrication regime. Contact fatigue begins with the initiation of microscopic fatigue cracks in the rolling contact surfaces or within the sub-surface regions due to cyclic shear stresses. Investigation of mixed lubrication effects on performance of machine components is of significant importance in order to understand and enhance their load carrying capacity. This article investigates the effects of mixed lubrication and surface roughness on machine components performance. Results from a mixed lubrication model are utilized to investigate the effects of different operating conditions on fatigue life of the components. Simple rough surfaces consisting of single hemispherical bump as well as complex rough surfaces consisting of a numerically generated 3D rough surface operating under mixed lubrication conditions are studied and results presented. The stress-based Ioannides and Harris model incorporating the fatigue limit is used to evaluate the fatigue life variation. Fast Fourier Transform (FFT) technique is used to significantly reduce the time required for the computation of internal stresses.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call