Abstract

The ternary Pd complexes [(phen)Pd(H)]+ (1-Pd) and [(phen)Pd(CH3)]+ (5-Pd) (where phen = 1,10-phenanthroline) both react with hexane in a linear ion trap mass spectrometer, forming the C–H activation product [(phen)Pd(C6H11)]+ (3-Pd) and releasing H2 and CH4, respectively. Density functional theory (DFT) calculations agree well with the experiments in predicting low barriers for these reactions proceeding via a metathesis mechanism. Species 3-Pd undergoes extensive fragmentation, or cracking, of the hydrocarbon chain when sufficient energy is supplied via collision-induced dissociation (CID), resulting in the extrusion of a mixture of alkenes, methane, and hydrogen. DFT calculations show that Pd chain-walking from α (terminal carbon) to β and from β to γ positions can proceed with barriers sufficiently below those required for chain cracking. The fragmentation reactions can be made catalytic if 1-Pd and 5-Pd produced by CID of 3-Pd are allowed to react with hexane again. Ni complexes largely mirrored the chemistry observed for Pd. Both 1-Ni and 5-Ni reacted with hexane, forming 3-Ni, which fragmented under CID conditions in a fashion similar to 3-Pd. In contrast, only 5-Pt reacted with hexane to form 3-Pt, which fragmented predominantly via sequential losses of H2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.