Abstract

The gas-phase extrusion-insertion reactions of the copper complex [bathophenanthroline (Bphen)CuI (O2 CC6 H5 )]2- , generated via electrospray ionization, was studied in a linear ion trap mass spectrometer with the combination of collision-induced dissociation (CID) and ion-molecule reaction (IMR) events. Multistage mass spectrometry (MSn ) experiments and density functional theory (DFT) demonstrated that extrusion of carbon dioxide from [(Bphen)Cu(O2 CC6 H5 )]2- (CID) gives the organometallic intermediate [(Bphen)Cu(C6 H5 )]2- , which subsequently reacts with carbon disulfide (IMR) via insertion to yield [(Bphen)Cu (SC(S)C6 H5 )]2- . The fragmentation of the product ion resulted in the formation of [Bphen]2- , [(Bphen)Cu]- and C6 H5 CS2 - under CID conditions. The formation of the latter two charge separation products thus provides evidence of C-C bond formation in the IMR step. Although analogous studies with isocyanate, which is isoelectronic with CS2 , showed a poor reactivity in the gas phase, the mechanistic understanding obtained from these model studies encourages future development of a solution phase protocol for the synthesis of amides from carboxylic acids and isocyanates mediated by copper(I) complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call