Abstract

AbstractA modeling study was undertaken under a decision support system (DSS) for drinking water security in the Foshan section of the Beijiang River, a typical tidal river in the North Pearl River Delta. The DSS included a database layer, application support layer, and an application layer. As an integral part of the DSS application support layer, an integrated modeling system was developed to simulate hydrodynamics. The balance of dissolved oxygen and toxicants was based on an environmental fluid dynamics code and a water quality analysis simulation program (WASP) modeling framework. Model calibration and validation was undertaken using monitoring data in normal hydrological conditions. Four scenarios for the environmental management of water, including current water temp‐spatial feature analysis, control of pollution sources, and emergency response, were designed and analyzed in the DSS. The results indicated that the tide downstream has a distinct influence on hydrodynamics and pollutant diffusion, and the DSS could be used to design effective schemes to reduce pollutant discharges and provide emergency responses for ensuring drinking water security.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call