Abstract
AbstractA 60‐year precipitation and streamflow record from the Caspar Creek Experimental Watersheds in northern California was used to explore the propagation of meteorological drought to hydrological drought. Standardized precipitation and runoff indices were calculated for the two forested catchments using integration periods of 12, 24, and 36 months. The resulting time series were used to define three severe drought events (1976–1977, 2013–2014, and 2020–2022). The earliest drought followed the 1971–1973 harvest of the 417 ha South Fork (SF) watershed, a second followed the 1989–1992 harvest of the 479 ha North Fork watershed, and a third followed the 2017–2019 reentry harvest of the SF. From these time series, we calculated drought metrics and anomalies to model differences in catchment responses in the context of climate and management. The meteorological drought in the 1977 event was more severe and extreme than the streamflow response. Both of the 21st Century droughts were hydrologically more severe than the 1977 drought. Timber harvest initially shortened and reduced streamflow drought (1977 and 2021) but prolonged and intensified the 2014 streamflow drought. Declining fall precipitation has reduced streamflows, thereby impeding salmonid migration and exacerbating impacts on native fish. Our results provide new insights into the role of climate variation, particularly long‐term and seasonal drought dynamics, in managed forests along the North American Pacific coast.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: JAWRA Journal of the American Water Resources Association
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.