Abstract

Transmon qubits experience open-system effects that manifest as noise at a broad range of frequencies. We present a model of these effects using the Redfield master equation with a hybrid bath consisting of low- and high-frequency components. We use two-level fluctuators to simulate 1/f-like noise behavior, which is a dominant source of decoherence for superconducting qubits. By measuring quantum state fidelity under free evolution with and without dynamical decoupling (DD), we can fit the low- and high-frequency noise parameters in our model. We train and test our model using experiments on quantum devices available through IBM quantum experience. Our model accurately predicts the fidelity decay of random initial states, including the effect of DD pulse sequences. We compare our model with two simpler models and confirm the importance of including both high frequency and 1/f noise in order to accurately predict transmon behavior. Published by the American Physical Society 2024

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.