Abstract
This study investigated land-use and land-cover change (LUCC) and hydrological responses under consistent climate change scenarios (A1B and B1) in the Heihe River Basin (HRB), a typical arid inland river basin in northwest China. LUCC was first projected using the Dynamic Conversion of Land-Use and its Effects (Dyna-CLUE) model. Two cases (Case 1 and Case 2) were then established to quantify the hydrological responses to single climate change and the combined responses to climate change and LUCC with the Soil and Water Assessment Tool (SWAT). The results of LUCC modeling under the A1B and B1 scenarios present distinct regional characteristics and also indicate that the projected future land-use patterns are not appreciably different than the actual map for the year 2000. In Case 1, which only considers the impacts of single climate change, overall, the streamflow at the outlet of the upper HRB is projected to decline, whereas at the outlet of the middle HRB to increase, under both climate change scenarios. Meanwhile, the frequency of occurrence of hydrological extremes is expect to increase under both scenarios. In Case 2, which considers the combined impacts of climate change and LUCC, the changes in streamflow and frequency of hydrological extremes are found to be remarkably consistent with those in Case 1. The results imply that climate change rather than LUCC are primarily responsible for the hydrological variations. The role of LUCC varies with regions in the context of climate change dominated hydrological responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.