Abstract

The seminal Bradley-Terry model exhibits transitivity, that is, the property that the probabilities of player A beating B and B beating C give the probability of A beating C, with these probabilities determined by a skill parameter for each player. Such transitive models do not account for different strategies of play between each pair of players, which gives rise to intransitivity. Various intransitive parametric models have been proposed but they lack the flexibility to cover the different strategies across n players, with the O ( n 2 ) values of intransitivity modeled using O ( n ) parameters, while they are not parsimonious when the intransitivity is simple. We overcome their lack of adaptability by allocating each pair of players to one of a random number of K intransitivity levels, each level representing a different strategy. Our novel approach for the skill parameters involves having the n players allocated to a random number of A < n distinct skill levels, to improve efficiency and avoid false rankings. Although we may have to estimate up to O ( n 2 ) unknown parameters for ( A , K ) we anticipate that in many practical contexts A + K < n . Our semiparametric model, which gives the Bradley-Terry model when ( A = n − 1 , K = 0 ) , is shown to have an improved fit relative to the Bradley-Terry, and the existing intransitivity models, in out-of-sample testing when applied to simulated and American League baseball data. Supplementary materials for the article areavailable online.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.