Abstract

Land use change is a crucial driving factor in hydrological processes. Understanding its long-term dynamics is essential for sustainable water resources management. This study sought to quantify and analyze land use change between 1985 and 2021 and its impacts on the hydrology of the Sejnane watershed, northern Tunisia. Remote sensing and a SWAT model using the SUFI-2 algorithm to identify the most sensitive parameters were used to achieve this objective. Land use maps were developed for 1985, 2001 and 2021. For the last 37 years, the watershed experienced a slight decrease in forest, scrubland and forage crops, a significant reduction in grassland, and a conspicuous expansion of olive trees and vegetable crops. Given the scarcity of observed discharge data, a SWAT model was calibrated for the period 1997–2010 and validated for 2011–2019. Model performance was good for both calibration (NSE = 0.78, PBIAS = −6.6 and R2 = 0.85) and validation (NSE = 0.70, PBIAS = −29.2 and R2 = 0.81). Changes in land use strongly affected the water balance components. Surface runoff and percolation were the most influenced, showing an increase in runoff and a decrease in percolation by 15.5% and 13.8%, respectively. The results revealed that the construction of the Sejnane dam, the extension of irrigated perimeters and olive tree plantations were the major contributors to changes in hydrology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.