Abstract

Large estuaries are influenced by winds over adjacent coastal ocean and land areas causing significant spatial variations in water levels, currents and surface waves. In this study we apply a numerical model to simulate hydrodynamics and waves in the Albemarle-Pamlico Estuarine System, a large and shallow back-barrier basin in eastern North Carolina, over a one-month study period (September 2008) with observations from several storm wind events of differing time scales and directions. Model performance is evaluated for a spatially varying wind field from the North American Regional Reanalysis (NARR) dataset in comparison to spatially uniform forcing from wind observations at offshore, coastal and land-based sites across the region. A spatially uniform wind field from offshore winds observations results in statistically better hydrodynamic simulations of water levels (R = 0.88) in the estuaries than NARR (R = 0.48) after comparison with measurements and indicates the importance of strong marine winds over most of the estuary surface area.The influence of a prominent bathymetric feature on hydrodynamics in Pamlico Sound is also investigated by numerically removing a 30 km long and 2–3 m deep shoal from the model grid and replacing it with an idealized depth of 6 m. The removal of the shoal increases water level setup by 14% at the estuarine shoreline, decreases current magnitudes by up to 40% in the shoal region and increases significant wave heights locally by up to 25% in the sound, indicating the importance of this relict geomorphic feature as a major control on the hydrodynamic response of the system during wind events. The results suggest that increasing the water depth over the shoal can lead to higher storm surges and wave heights with the possibility of increased inundation and erosion of the back-barrier and mainland coastal regions. The complex bathymetry and marine wind influence are critical input conditions for modeling large and shallow lagoonal estuaries like the Albemarle-Pamlico Estuarine System.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call