Abstract

BackgroundThe objectives of this study were to evaluate genomic and microbial predictions of phenotypes for meat quality and carcass traits in swine, and to evaluate the contribution of host-microbiome interactions to the prediction. Data were collected from Duroc-sired three-way crossbred individuals (n = 1123) that were genotyped with a 60 k SNP chip. Phenotypic information and fecal 16S rRNA microbial sequences at three stages of growth (Wean, Mid-test, and Off-test) were available for all these individuals. We used fourfold cross-validation with animals grouped based on sire relatedness. Five models with three sets of predictors (full, informatively reduced, and randomly reduced) were evaluated. ‘Full’ included information from all genetic markers and all operational taxonomic units (OTU), while ‘informatively reduced’ and ‘randomly reduced’ represented a reduced number of markers and OTU based on significance preselection and random sampling, respectively. The baseline model included the fixed effects of dam line, sex and contemporary group and the random effect of pen. The other four models were constructed by including only genomic information, only microbiome information, both genomic and microbiome information, and microbiome and genomic information and their interaction.ResultsInclusion of microbiome information increased predictive ability of phenotype for most traits, in particular when microbiome information collected at a later growth stage was used. Inclusion of microbiome information resulted in higher accuracies and lower mean squared errors for fat-related traits (fat depth, belly weight, intramuscular fat and subjective marbling), objective color measures (Minolta a*, Minolta b* and Minolta L*) and carcass daily gain. Informative selection of markers increased predictive ability but decreasing the number of informatively reduced OTU did not improve model performance. The proportion of variation explained by the host-genome-by-microbiome interaction was highest for fat depth (~ 20% at Mid-test and Off-test) and shearing force (~ 20% consistently at Wean, Mid-test and Off-test), although the inclusion of the interaction term did not increase the accuracy of predictions significantly.ConclusionsThis study provides novel insight on the use of microbiome information for the phenotypic prediction of meat quality and carcass traits in swine. Inclusion of microbiome information in the model improved predictive ability of phenotypes for fat deposition and color traits whereas including a genome-by-microbiome term did not improve prediction accuracy significantly.

Highlights

  • The objectives of this study were to evaluate genomic and microbial predictions of phenotypes for meat quality and carcass traits in swine, and to evaluate the contribution of host-microbiome interactions to the prediction

  • Variances explained by G, M and their interaction Estimates of variance components, heritabilities, and microbiabilities for the meat quality and carcass traits are in Additional file 5: Tables S9 and S10 [see Additional file 5: Tables S9 and S10]

  • We evaluated the effect of the host genome, gut microbiome, and their interaction on the phenotypic prediction of meat quality and carcass traits in swine

Read more

Summary

Introduction

The objectives of this study were to evaluate genomic and microbial predictions of phenotypes for meat quality and carcass traits in swine, and to evaluate the contribution of host-microbiome interactions to the prediction. Carcass composition and meat quality are economically important traits in the pig industry but, until recently, they have not been the major objectives in breeding programs [1, 2]. Microbial communities are responsible for a large variability across a wide array of phenotypes, and the number of genes in the microbiome (often referred to as the second genome) is twice the number of genes in the host genome [10]. The effect of the variability of the host microbiome on carcass quality traits has been little explored in pork production

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call