Abstract

Purpose – The purpose of this paper is to develop analytical model for gate tunneling current for an ultra‐thin gate oxide n‐channel MOSFET with inevitable nano scale effects (NSE).Design/methodology/approach – A computationally efficient model for gate tunneling current for an ultra‐thin gate oxide n‐channel MOSFET in nano scale is presented. The model predictions are compared with the two‐dimensional Sentaurus device simulation.Findings – Good agreement between the model and experimental data was obtained. The model also shows good agreement when compared with Sentaurus simulation and available model. It is observed that neglecting NSE may lead to large error in the calculated gate tunneling current. The findings provide a guideline to the severity of NSE from the point of view of standby power consumption. It is found that temperature and substrate bias have almost negligible effect on gate tunneling current. The gate tunneling current variation with gate bias, gate oxide thickness and source/drain ove...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call