Abstract

Gas/particle (G/P) partitioning of semi-volatile organic compounds (SVOCs) such as polybrominated diphenyl ethers (PBDEs), is an important atmospheric process due to its significance in governing atmospheric fate, wet/dry deposition, and long-range atmospheric transport. In this article, eight models published to predict the G/P partitioning of PBDEs are reviewed. These eight models are used to calculate the G/P partitioning quotient and particulate phase fraction of selected PBDE congeners. A comparison of the predicted results from the eight models with monitoring data published by several research groups worldwide leads to the following conclusions: 1) when the values of the logarithm of the octanol-air partition coefficient (logKOA) fall below 11.4 (the first threshold value, logKOA1), all 8 models perform well in predicting the G/P partitioning of PBDEs in the atmosphere, and 2) when logKOA is >11.4, and especially above 12.5 (the second threshold value, logKOA2), the Li-Ma-Yang model, a steady-state model developed based on wet and dry deposition of the particles (Li et al., Atmos. Chem. Phys. 2015; 15:1669–1681), shows the best performance with highest conformity to the measurements for selected PBDEs (94.4 ± 1.6% data points within ±1 log unit). Overall, the Li-Ma-Yang model appears to capture the most important factors that affect the partitioning of PBDEs between gaseous and particular phases in the atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call