Abstract
The group contribution equation of state (GC-EoS) is extended to model gas solubilities in the homologous 1-alkyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl) imide family. The gases considered in this work are CO2, CO, H2, CH4, and C2H6. The model parameters were estimated on the basis of 1400 experimental data points in the temperature range of 278–460 K and pressures up to 160 bars. A correlation is also presented to calculate the critical diameter, a characteristic parameter of the GC-EoS repulsive term, as a function of the ionic liquid molar volume. Density data is most often available for ionic liquids; hence, the correlation provides a predictive method for ionic liquids not included in the parameterization process. The new parameters were then used to predict the phase behavior of binary mixtures containing different solutes (including C3H8, C4H10, and C6H14) and ionic liquids with different chain lengths than those used in the parameterization process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.