Abstract

In this work, we propose a natural model for information flow in the brain through a neural message-passing dynamics on a structural network of macroscopic regions, such as the human connectome (HC). In our model, each brain region is assumed to have a binary behavior (active or not), the strengths of interactions among them are encoded in the anatomical connectivity matrix defined by the HC, and the dynamics of the system is defined by the Belief Propagation (BP) algorithm, working near the critical point of the network. We show that in the absence of direct external stimuli the BP algorithm converges to a spatial map of activations that is similar to the Default Mode Network (DMN) of the brain, which has been defined from the analysis of functional MRI data. Moreover, we use Susceptibility Propagation (SP) to compute the matrix of long-range correlations between the different regions and show that the modules defined by a clustering of this matrix resemble several Resting State Networks (RSN) determined experimentally. Both results suggest that the functional DMN and RSNs can be seen as simple consequences of the anatomical structure of the brain and a neural message-passing dynamics between macroscopic regions. With the new model, we explore predictions on how functional maps change when the anatomical brain network suffers structural alterations, like in Alzheimer’s disease and in lesions of the Corpus Callosum. The implications and novel interpretations suggested by the model, as well as the role of criticality, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.