Abstract

BackgroundCurrent assessments of the effects of climate change on future wildfire risk are based on either empirical approaches or fire weather indices. No study has yet used process-based models over national scales to understand how and where will increases in climate aridity affect the likelihood of fire activity through changes in the moisture content of live (LFMC) and of dead (DFMC) fuels. Here, we used process-based models to forecast changes in LFMC and DFMC under the 21st century climatic conditions projected from moderate and high greenhouse gas emission scenarios (RCP4.5 and RCP8.5). Predictions were performed across broad productivity gradients in peninsular Spain to understand how productivity mediates the effects of climate change on fuel moisture dynamics.ResultsLFMC and DFMC were predicted to decline under the climatic conditions projected for the coming decades. Increases in the annual frequency of days with fuel moisture content below wildfire occurrence thresholds were predicted to extend fire season lengths by 20 days under RCP4.5 and by 50 days under RCP8.5. The effects of climate change on LFMC and DFMC varied linearly and negatively with productivity (stronger fuel moisture decreases in least productive environments). Although we observed a significant mitigation effect from rising CO2 (via increases in water-use efficiency), it was not enough to offset LFMC declining trends induced by increased temperature and aridity.ConclusionsWe predicted that the warmer and more arid climatic conditions projected for the 21st century will lead to generalized declines in fuel moisture, lengthening fire seasons, and increasing wildfire danger. The use of process-based models to forecast LFMC dynamics allowed the consideration of plant species capabilities to buffer climate change impacts. Significant increases in the fire season length predicted in the most productive environments, currently with large fire return intervals, would pose an increase of fire danger in major Spanish carbon sinks. Finally, the CO2 mitigation effect would not be enough to offset climate change-driven declines in seasonal LFMC levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call